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Abstract

Background
While specialization plays an essential role in how scientific research is pursued, we un-
derstand little about its effects on a researcher’s impact and career. In particular, the extent
to which one specializes within their chosen fields likely has complex relationships with
productivity, career stage, and eventual impact.

Results
We develop a novel and fine-grained approach for measuring a researcher’s level of spe-
cialization at each point in their career and apply it to the publication data of almost 30,000
established biomedical researchers. Using a within-researcher, panel-based econometric
framework, we arrive at several important results. First, there are significant returns to
specialization—25% more citations per standard deviation increase in specialization. Sec-
ond, these returns are much higher early in a researcher’s career—as large as 75% per
standard deviation increase in specialization. Third, returns are higher for researchers who
publish few papers relative to their peers. Finally, we find that, all else equal, researchers
who make large changes in their research direction see generally increased impact.

Conclusions
The extent to which one specializes, particularly at early stages of a biomedical research ca-
reer, appears to play a significant role in determining the citation-based impact of their pub-
lications. When this measure of impact is, implicitly or explicitly, an input into decision-
making processes within the scientific system (for example, for job opportunities, promo-
tions, or invited talks), these findings lead to some important implications for the system-
level organisation of scientific research and the incentives that exist therein. We propose
several mechanisms within modern scientific systems that likely lead to the returns we ob-
serve and discuss them within the broader context of reward structures in biomedicine and
science more generally.

Keywords: scientific specialization, scientific impact, scientific careers, science of science,
bibliometrics, research systems.



Background

No researcher can be an expert in all fields. The entirety of human knowledge, even when

considering but a single field, is simply too much for a person to accumulate in a lifetime.

Faced with this challenge, researchers specialize [1]. Through a series of decisions and choices,

each researcher ends up accumulating the knowledge and skills necessary to advance some tiny

sliver of the frontier of knowledge.

In addition to reducing the amount of knowledge and skills one must accumulate, specializa-

tion plays a key role in the sociology of science literature. In specializing, a researcher becomes

a member of a community of researchers working on similar matters, in a similar fashion, with

a similar viewpoint. It is within these specialized communities that the so-called “invisible col-

lege” is most visible [1, 2]. The concept of an invisible college has a long history—in this work,

we work with the definition provided by Zuccala [3], which thinks of the invisible colleges as

a group of actively interacting researchers that are drawn together to make progress within a

specialized domain, often across institutional and geographical boundaries.

These observations present us with two points of view to consider the specialization of

researchers. Viewed through the frontier-of-knowledge lens, specialization is required to reach

the frontier of knowledge and start contributing within a human lifetime. Jones [4] formulates

this as a “knowledge burden,” showing that as the frontier of knowledge expands more quickly,

individuals reach it later in life. This observation holds for even the most lauded inventors and

scientists in recent history [5]. Viewed through the lens of the invisible college, specialization

determines the community of researchers within which the researcher falls—the group that one

knows and is known to [2]. Research has shown that these weak ties play a crucial role in a

variety of matters central to a researcher’s career [6, 7] and allow them to accumulate social

capital [8].
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Measuring specialization and impact. While specialization is understood to play an essen-

tial role in research and researchers’ careers, most attention has been paid to how specialization

emerges [9] and to the ‘content’ of specialization [10]. That is, the fields, sub-fields, and topics

in which researchers choose to work. Here we examine a very different aspect of specialization,

namely the extent of specialization. In plain language, we capture how focused a researcher

is on the topics they are working on the most. We then statistically examine the effect of spe-

cialization upon the researcher’s citation-based impact. Our operationalization allows a very

fine-grained characterization of specialization, rather than one defined by journal classifica-

tions [11–13].

This operationalization of specialization is quite different from notions of monodisciplinar-

ity. That is, the opposite of specialization, as defined here, is not interdisciplinarity—working at

the intersection of fields is different from publishing work on many different topics—but rather

generalization. A researcher working in a highly interdisciplinary space but publishing exclu-

sively on the same small set of topics would be classified as a specialist within our framework.

As such, our operationalization of specialization relates to the so-called ‘balance’ dimension

that is commonly referred to in the extant literature on interdisciplinarity [14, 15], though we

note that this term is usually applied on the level of research outputs and not to researchers

themselves [16, 17].

We use citations as a measure of impact for two primary reasons. First, while undoubtedly

noisy and narrow in scope, citations remain a popular indicator of research impact [18], most

perniciously in the context of career development. We note that the pervasiveness of citation-

based averages is widely seen as a problem within scientometric circles [19, 20]. In this paper,

we do not advocate for the use of citations as a performance metric generally, and we merely

use them as an indicator of the level of attention an individual receives from their peers that

may nonetheless form the basis for professional judgments during their research career [21].
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Secondly, and relatedly, while it is unclear how well citation counts of individual articles cor-

relate with conceptions of the intrinsic quality of those articles [22], we also expect that social

status within a research community moderates the number of citations received [23, 24]. That

is, in the framing of our research question and the interpretation of our results, we make the

implicit assumption that scientific impact as reflected in citations are generated jointly by both

a judgement of research quality and citers’ perception of the author’s social status or ability,

rather than solely as indicators of publication quality alone [25, 26], as we expect both of these

factors to be moderated by one’s specialization level.

The effect of specialization. Considering the frontier of knowledge point of view, it is unclear

what effect the extent of specialization should have upon a researcher’s impact. From the ‘bur-

den of knowledge’ perspective [4], it is reasonable to expect that greater specialization will lead

to a greater volume of output, particularly if one is working within teams with low coordination

costs [27]. However, this reasoning does not necessarily extend to the impact of the output. A

body of literature shows that combining bits of atypical [28] or less obvious [29] knowledge

produces the highest impact papers. This literature would seem to indicate that as a researcher

becomes more specialized and focuses more narrowly, they will produce lower impact research,

as they will be sourcing ideas from an ever-smaller portion of the frontier of knowledge. How-

ever, collaboration can offset this effect, allowing the team as a whole to source ideas from any

area in which a single member is specialized, no matter how narrowly the members specialize

individually. As such, it is important to recognize that specialization on individual level, as a

phenomenon, is distinct from disciplinarity on the level of particular outputs.

Viewed through the lens of the sociology of science and the invisible college, the expected

returns to specialization are more straightforward. Researchers can raise their visibility within

a specific community more effectively by specializing to a greater extent, thereby attracting
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more citations. This line of thinking is consistent with one of the few previous studies using

the extent of specialization that we are aware of [30]. In that work, the author finds that greater

specialization leads to greater (financial) compensation for a sample of professors in linguistics

and sociology. While the definition of specialization in that paper aims to capture the same

concept as we do in the current work, the dependent variable does not capture the effect of

specialization on individuals’ citation impact in a dynamic, within-researcher empirical setting,

as used in the current work. Further, our approach has been developed to take advantage of

both the large numbers of keywords that can be applied to biomedical research, as well as

the significant variation in the frequencies of these keywords assigned to different authors and

publications. In a follow-on work [31], the authors incorporate a dynamic aspect to assess

the various dynamic impacts of specialization on productivity and visibility within the fields

of sociology and linguistics. Our work builds on this research, constructing a much finer-

grain measure of specialisation that is sensitive to topic popularity. Additionally, we apply

the measure within the biomedical sciences—a very different research environment to that of

sociology or linguistics. Indeed, our researcher fixed-effects econometric approach uncovers

contrasting results to those of [31]; however, this may be due to differences in publication and

citation practices between biomedical fields and the social sciences.

A more recent work, using journal classifications to construct a researcher-level measure of

interdisciplinarity, found that while more interdisciplinary researchers attracted more citations

per paper, this effect was more than offset by lower productivity [11]. However, in that case,

the researcher-level interdisciplinarity metric is explicitly designed to measure the diversity of

fields from which a researcher draws upon for their research—it does not directly consider the

prevalence distribution across these fields. In contrast, our definition measures the diversity

of topics a researcher consistently works on. This difference in definition makes it difficult

to compare our results directly, but research outside the sociology domain suggests that these
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research avenues may be complementary [16, 17, 32].

In this paper, we conduct an exploratory investigation into the returns to specialization using

a dataset of 29,197 biomedical researchers. We estimate the extent to which a researcher is spe-

cialized using a novel measure that captures how intensely focused they are on specific topics.

We measure returns in terms of research impact, proxied by citations per publication. In addi-

tion to measuring whether greater specialization positively or negatively affects a researcher’s

impact, we also examine the role of career age, publishing rate, and recent changes in research

topics in this relationship. Specifically, we answer four questions. First, does the extent to

which a researcher is specialized affect the impact of their research? Second, does the effect of

specialization on impact change with career age? Third, does the effect of specialization depend

on the number of papers a researcher is producing? Finally, do recent changes in a individual’s

research interests affect impact?

To provide answers to these questions, we need to use data that are rich in both longitudinal

and cross-sectional dimensions, because we wish to measure levels of specialization and impact

at each point in a researcher’s career. To assess trends that may be moderated by seniority or

experience, we need to repeat these measurements over a long period. These considerations

lead us to select a restricted cohort of nearly 30,000 well-published biomedical researchers.

Each of these researchers is likely to be considered to be ‘successful’ in the biomedical field by

almost any measure. As such, all results are necessarily conditional on long-term success and

should be interpreted with this caveat in mind. We discuss the details and implications of this

restriction in the following sections. The Materials & Methods section describes the data, the

variables, and the regression models.
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Results

Table 1 presents our main econometric results exploring the relationships between impact, spe-

cialization, career age, publishing rate, and changes in research orientation. We proxy the latter

by a cosine similarity measurement that captures the extent of changes to a researcher’s topical

interests since the previous observation period, as reflected in the subject matter of their pub-

lished works. Column 1 shows the coefficients for a researcher fixed-effect panel regression

model with no interaction terms. This baseline model indicates that a one standard deviation

increase in specialization (calculated at the population level) results in a 25.7% increase in im-

pact. That is, every paper that the researcher published in that time window receives on average

25% more citations than it would have otherwise (i.e., without the boost in specialization). Col-

umn 2 introduces the interaction term between specialization and career age, with the negative

coefficient indicating that the returns to specialization decrease over the course of a career. In

other words, the payoff to specialization is lower for more experienced researchers, but it is

never deleterious for the career stages we observe. Column 3 introduces the interaction term

between specialization and yearly publication counts, with the negative coefficient indicating

that the returns to specialization decrease as a researcher publishes more.

However, care should be taken in interpreting these coefficients: the returns to specialization

decrease as a function of career age and publishing rate, but the overall impact is always pos-

itive. That is, hypothetically increasing a researcher’s specialization appears to be associated

systematically with a boost in impact. When the same hypothetical increase in specialization

is applied to the same researcher later in their career (Column 2) or for higher publishing rates

(Column 3), the boost in impact is less pronounced, but always positive during the 35-year

period we observe.

Lastly, Column 4 shows estimates for the complete interaction model. It includes the inter-
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action between publishing rate and career age and the triple interaction term of specialization,

publishing rate, and career age.

The variable cosine similarity maintains a negative impact on average citation counts across

all specifications. Thus, a researcher who makes greater changes in research direction from one

period to the next achieves greater impact in the next period. This result, which is not causal,

indicates that researchers are likely to reorient their research direction toward topics that result

in higher future impact. Indeed, at least for our successful cohort, the ability of researchers

to identify promising new avenues of research and immerse themselves in those areas may

play a large role in the returns to specialization we observe, adding color to previous work

on the evolution of research interests [33]. More importantly in our context, this finding also

provides some evidence against reverse causality of the relationship between specialization and

impact—the idea that researchers may choose to specialize in topics that they expect to be more

promising. The cosine similarity variable captures changes in research topics and, therefore,

picks up this effect. Thus, holding research topics constant, we do find strong positive returns

to specialization.

As our observation periods are three-years long, it is difficult to assess whether drastic

changes in research direction on shorter time scales are rewarded with greater future impact,

but recent work examining this question at the individual-paper level indicates that the reverse

is likely true [34]. These contrasting results suggest that a balance between topic evolution and

specialization is optimal for mid-to-long term citation-based impact at the individual researcher

level—at very short time scales, a sudden change in research interest appears to harm impact,

while at longer timescales, a complete lack of topic evolution actively attenuates the benefits of

specialization.

[TABLE 1 ABOUT HERE]
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Figure 1 provides a clear picture of the returns to specialization—plotting the marginal effect

(expected citation boost) for a one standard deviation increase in specialization as a function of

career age for groups with a high or low publishing rate. These effects rely on the model found

in Column 4 of Table 1. The figure unambiguously answers the first three questions posed pre-

viously regarding the returns to specialization. First, the returns to specialization are positive

and significant, both in a statistical and a real-world sense. In the early stages of a career, returns

can exceed 70% and even in mid-career remain well above 10%. Indeed, in the early years of

a researcher’s career, the returns to specialization can be great, boosting a typical researcher’s

expected citations by 50% or more for a one standard deviation increase in specialization. In-

terestingly, the returns are never negative, regardless of career age or publishing rate. Second,

the returns to specialization decrease as a function of career age, regardless of publishing rate.

Third, the returns to specialization are higher for researchers with a lower publishing rate, al-

though we observe a crossover around the end of the career in Figure 1. However, the difference

between the two groups after crossover is not statistically significantly different from zero.

[FIGURE 1 ABOUT HERE]

Robustness Checks. To evaluate the validity of these results, we carry out a number of ro-

bustness checks, each described in more detail in the Supplementary Material. First, we further

analyze a sample of 22,577 biomedical researchers having published between 75 and 99 papers

(rather than 100 or more) during their careers. We find quantitatively and qualitatively similar

results. This finding gives us confidence that the results would hold for researchers having a

lower publishing rate, although we cannot formally test this assertion because our measure of

specialization would lose statistical power.
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Second, we break the 100 or greater, and 75 to 99, publication samples into field-specific

subsets and repeat the analysis on each of the eight most frequent fields found in our data

sets. These fields include molecular and cell biology, medicine, neuroscience, gastroenterology,

infectious diseases, radiology, nephrology, and psychology. In each of the eight fields, for each

of the publication thresholds, we find that our main findings are qualitatively similar—however,

the statistical significance is weaker for the smaller subfields.

Lastly, while our specialization measure is, by definition, conceptually distinct from in-

terdisciplinarity, we also confirm that the measure is also empirically distinct. We split the

cohort into monodisciplinary and interdisciplinary researchers (based on whether a researcher

has published research in multiple sub-fields within the three-year window). We then conduct

several non-parametric statistical tests to detect any differences between the specialization dis-

tributions of these groups. We do not find any significant differences, providing evidence that

our specialization measure is not sensitive to differences in levels of interdisciplinarity between

researchers, at least at the sub-field level.

Conclusions

Given the strength of the effect that we find, it is critical to consider the returns to specialization

in the context of the rich and fast-moving discussion surrounding the academic career [35, 36].

The fact that the returns to specialization are much greater early in a researcher’s career has clear

implications for academic careers. Indeed, it is precisely in the early stages that such a career

is the most fragile [37] while simultaneously being a period when researchers are expected to

build a foundation from which they may explore and develop the ideas that may eventually yield

research grants and permanent positions. Choosing to be more specialized early in one’s career

not only boosts one’s impact during that period but the early boost is compounded throughout

the career by way of various Matthew Effects [38–40]. The observation that the returns decrease
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with increased publishing also informs our understanding of the academic career. Researchers

with limited resources are rewarded for maximizing their specialization and focusing on their

core competencies.

Overall, this analysis points to significant returns to specialization in academic research in

the biomedical context. Those returns are significant in a statistical sense and magnitude—a

10% to 70% boost in the expected number of citations is entirely possible for an individual

researcher given an increase in specialization of one standard deviation (depending on career

stage). The returns to specialization are most pronounced early in a researcher’s career and de-

crease monotonically thereafter. The returns to specialization are greatest for researchers pub-

lishing at a lower rate relative to their cohort and decrease monotonically as the publishing rate

increases. While the returns to specialization decrease with age and publishing rate, increasing

one’s extent of specialization has no beneficial impact only at the longest times we observe,

typically 25–35 years after a researcher first publishes. Lastly, changes in research direction at

the scales of the time windows considered (three years) appear to increase (within-researcher)

citation-based impact.

Discussion

These results have significant implications for how we view and manage academic careers, es-

pecially in their fragile early stages. In the context of long-term success in biomedical research,

working continuously on a relatively small and stable set of topics is rewarded by citations to

the output of this research. Further, there likely exists a complex web of interacting mecha-

nisms that conspire to reinforce this phenomenon in ways that are not necessarily positive for

the scientific enterprise. The remainder of this article will discuss these potential mechanisms,

the limitations that may reduce the generalizability of this work, and open questions that may

add more color to the current findings.
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The Broader Contexts of Specialization. These findings also raise a great many questions. A

critical one, of course, concerns the mechanisms that generate these returns. From the frontier-

of-knowledge point of view, it would seem that by focusing more intensely, a researcher may

be in a better position to push the research frontier and attract more citations (perhaps by es-

tablishing priority on new findings). Taking the perspective of the sociology of science, one

explanation is that by specializing more narrowly, a researcher may be better positioned to raise

their visibility within a specific community. Indeed, the fact that we observe much greater re-

turns to specialization early in a researcher’s career (when a researcher has little reputation or

visibility, to begin with) suggests that a young researcher’s impact is maximized by focusing

on a community that is as specific as possible. However, the degree to which a researcher can

‘choose’ a community at this early stage is unclear. We suggest that the choice of research di-

rection likely comes before any intentional choice of community. That the returns decrease as a

function of career age could imply that it is easier to transfer visibility, accumulated advantage,

or reputation across communities than it is to earn such things simultaneously across several

communities.

It is also likely that current reward systems in contemporary science systems favor scien-

tific specialization. While we draw a conceptual distinction between monodisciplinarity and

specialization, there is almost certainly a strong relationship between the disciplinary nature

of a particular scientific output and the level of specialisation of the authors. The fact that

science systems may punish interdisciplinary research [41, 42], due to perceived risk or other-

wise, could nudge researchers to specialize or otherwise conform to more mainstream topics

or career pathways [43]. Indeed, biomedicine often requires considerable resources to conduct

high-impact, cutting-edge science. When the attraction of those resources for potentially risky

projects is moderated by reputation, we expect to see returns to specialization decrease as a

researcher becomes more established.
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Our results are in line with prior work in the field of bibliometrics on so-called interdisci-

plinarity. That body of literature often breaks down interdisciplinarity into various components,

most commonly variety, balance, and disparity [14]. While these concepts are usually applied

to individual publications and have various operationalizations, we can make some useful com-

parisons between the current work and previous research in this area. In particular, the ‘balance’

dimension generally attempts to capture the uniformity of the proportions of different compo-

nent types that exist within some object of interest. For example, a bag containing candy in a

variety of colors in roughly equal proportions would have a high balance, while one in which

the vast majority are blue would have a low balance. This concept is often operationalized on

the paper level using either the Shannon entropy or the reverse Gini coefficients of the set of

disciplinary categories extracted from the references in each paper [16, 17, 32, 44, 45]. By cat-

egorizing interdisciplinarity into variety, balance, and disparity, it is possible to jointly estimate

the effects of each of these concepts on impact. Within that framework, at the paper reference

level, balance is almost universally negatively associated with impact in prior work, while the

other two dimensions are either positively or ambiguously associated with impact. This nu-

anced point is very pertinent to the current work: the diversity of information sources and the

evenness of the distribution of inputs across these sources have distinct and generally opposing

relationships with impact. We note that the total number of unique MeSH terms, a metric more

related to the ‘variety’ dimension, is included as a control in our main model. In sum, while it

is not straightforward to directly compare the impact of individual articles with the impact of

researchers more broadly, nor to compare operationalizations based on input knowledge with

those based on research topics, our results are at least consistent with this prior research, al-

though our researcher-focused approach allows for additional nuance arising from access to the

temporal dimension.

Our analysis considers the quantity and broad patterns of collaboration by including control
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variables at the researcher level. However, the role of collaboration and division of labor in

these results merits further discussion. An established body of literature shows that papers

with a distinct interdisciplinary character [16, 17] or that arise from atypical combinations of

knowledge [28] are more highly cited on average or more likely to represent a breakthrough

than conventional disciplinary research. In the context of that literature, our results suggest that

atypical combinations and interdisciplinarity may be best achieved by specialized researchers

working together in teams. Although, there is likely a limit at which this hypothesis breaks

down: as researchers become more specialized, they may have more difficulty communicating

effectively, which in turn raises coordination costs [27, 46, 47].

Limitations and Open Questions. Several outstanding issues moderate the practical useful-

ness of the results presented herein, especially in the context of academic careers. The first

concerns the extent to which researchers can control their specialization actively. That is to say,

how do the concrete day-to-day, project-to-project, and job-to-job decisions a researcher faces

map on to specialization? Clearly, some subset of these decisions does affect specialization—

for example, the selection of a specific new project. Researchers may perceive a risk of being

‘left behind’ if they spend too much time working on projects outside of their usual specialized

research path. These concerns raise an additional question, namely, if researchers do not control

their own extent of specialization, who or what does? And in turn, how may those individuals,

institutions, or systems craft policy to bring about a better configuration of the academic career

in light of these findings? After all, we do not claim that the observed returns to specialization

are a good thing for science or society. The patterns we see are, in part, the result of a complex

set of incentives and Matthew effects that are embedded in research ecosystems, many aspects

of which have been heavily criticized for their various biases and inequitable outcomes [48–51].

While it is these incentives that create an environment wherein specialization is a way for early-
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career researchers to ‘get ahead’ in science, there is little to suggest that these incentives lead to

efficient or equitable scientific progress. In fact, many prominent scholars suggest that the oppo-

site is true for both individual researchers [41, 43, 52–54] and society-at-large [43, 52, 55, 56].

Further, the relative inelasticity of research direction to funding [57] could entrench early-career

specialization and exacerbate both opportunity costs and coordination costs associated with an

over-specialized scientific workforce.

A second concern is the inherent selection bias in the above analysis that is necessary to

obtain enough data for our method to be effective. The results in Table 1 pertain to researchers

with at least 100 publications—our main sample comprises successful researchers by virtue of

this threshold. While an alternative sample used as a robustness check includes those with be-

tween 75 and 99 publications, these researchers have achieved at least moderate success. The

results for both samples are almost identical, which provides some evidence for the generality

of these results, at least for biomedical researchers. However, even the 75-paper threshold may

exclude many successful but less productive generalists [11]. At the same time, the interac-

tion term between specialization and productivity in Table 1 indicates that higher productivity

lowers total returns for a given level of specialization. As such, less productive specialists

also reap greater returns to their specialization. Therefore, our results are consistent with the

idea that monodisciplinary and interdisciplinary specialists may both benefit from lower pro-

ductivity at the individual output level. A more comprehensive investigation of the relation-

ships between productivity, impact, and a researcher’s precise location on the specialization-

disciplinarity plane may be a fruitful avenue for future research on this topic. While necessary

for the operationalization of specialization used in this work, the imposed publication threshold

implies that several lines of research are closed to us, such as the relationships between early

specialization, academic career length, and opportunities outside of academia. For example, it

may be the case that less-specialized high-impact early career researchers have a large selec-
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tion of stable, well-compensated jobs outside of academia due to this breadth. In contrast, their

specialized high-impact colleagues may have more choice of fellowships and positions within

academia. In other words, funding systems and entrenched departmental structures at research

institutions may act as filters in early academic careers, with a bias toward high-impact spe-

cialized researchers. Further, it is possible that our results may be driven in part by Matthew

effects [38]—a strong citation bias toward specialization could lead to specialized researchers

remaining active and publishing for a longer period than less specialized researchers, leading

to inclusion in our sample. In any case, it is clear that the returns, or lack thereof, to producing

a more or less specialized stream of research outputs remain a very pertinent aspect of career

progression in science.

Finally, in the analysis presented above, we did not find a point after which increasing one’s

extent of specialization becomes significantly deleterious in any discipline we examined (see

Supplementary Materials for disciplinary breakdown). However, when taken to its absolute ex-

treme, increasing specialization further may start to reduce a researcher’s impact. For example,

by focusing exclusively on an extremely narrow subfield, a researcher may significantly limit

the size of the audience for their work, effectively placing a low ceiling on the potential im-

pact of any paper they publish. It is also entirely possible that the returns to specialization break

down in some periods, fields, or populations due to idiosyncracies in publishing, citation behav-

ior, or institutional factors. This work focuses on biomedical researchers, and while one might

expect similar results for other disciplines characterized by growing lab science and publishing

rates (e.g., physics and chemistry), it is unclear whether the returns to specialization extend

to all disciplines. For example, recent work suggests that the field-dependent speeds of the

knowledge frontier could lead to disciplinary variation in the returns to specialization [58]—a

generalist may find it more challenging to keep up with multiple fast-moving fields and iden-

tify new and salient knowledge recombination opportunities. However, it does stand to reason
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that the returns to specialization may differ significantly for researchers in disciplines character-

ized by smaller teams and lower publishing rates, such as economics and mathematics. Further

work is required to investigate how these dimensions of academic research affect the returns to

specialization.
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Materials & Methods

Data. Our researcher dataset is drawn from the Author-ity disambiguation of PubMed [59,

60]. Each researcher in our sample meets three criteria. First, they published their first paper in

1975 or later. Second, they have published at least 100 publications up to the year 2009. Third,

their primary area of research was determined to be biomedical using the algorithm outlined in

the Supplementary Materials exploiting the journal clustering of Rosvall and Bergstrom [61]. To

be explicit, we are not considering researchers publishing prior to 1975, publishing fewer than

100 papers (although this threshold is lowered to 75 papers in the Supplementary Materials), or

primarily active in non-biomedical fields. For each researcher we have a full publication record,

which we cross reference from PubMed to the Clarivate Analytics Web of Science database. We

analyze a total of 4,574,973 publications.

We broke each researcher’s career into three-year windows and identified the papers they

published during each period. From the papers published in each time window, we calculated

our main explanatory variable, specialization, as well as additional explanatory and control

variables, described below. This panel data was then analyzed using a researcher fixed-effect

panel regression approach.

[FIGURE 2 ABOUT HERE]

Specialization Measure. Our method for estimating the extent to which a researcher is spe-

cialized is based on Medical Subject Headings (MeSH) as outlined in Figure 2. MeSH terms are

a set of descriptors that make up a controlled vocabulary managed by the U.S. National Insti-

tutes of Health (NIH). Each publication in the PubMed database is assigned a set of MeSH terms

characterizing its content by an independent indexer at the National Library of Medicine (an in-
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stitute based at the NIH). MeSH terms have found broad use as topic tags across a wide variety

of applications, including the identification of emerging research avenues [62], the mapping

of the medical research landscape [63], the modelling of medical innovation dynamics [64],

measuring research subject boundaries and research similarity [65] and the construction of dis-

ease–symptom networks [66]. We note that the use of MeSH terms for identifying specific

relationships between or trends within given research topic is not perfect. However, we suggest

that as long as the assignments of similar works are themselves similar, then the intuition behind

our specialization measure, described below, will hold.

For each MeSH term assigned to a researcher’s papers in a given time window, we calculate

the researcher’s revealed comparative advantage (RCA) in that MeSH term:

RCAi,m,w =
ni,m,w

pi,w

/(
Nm,w

Pw

)
(1)

where ni,m,w is the number of researcher i’s papers from time window w on which MeSH

term m appears and pi,w is the number of papers published by that researcher in the same time

window. The variable Nm,w is the number of papers in that time window with MeSH term m

in the PubMed database, and Pw is the total number of papers published in that time window.

In words, RCA captures the fraction of a researcher’s output that is associated with a particular

MeSH heading, relative to the same fraction averaged across all researchers in the cohort.

We then apply a z-score transform to the quantity RCAi,m,w:

zi,m,w =
RCAi,m,w − 1

σRCAi,m,w

, (2)

in which the standard deviation of RCAi,m,w is calculated assuming counting statistics (see

Supplementary Materials for derivation):
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σRCA = RCA

(
1

n
+

1

p
+

1

P
+

1

N

)1/2

. (3)

For example, a z-score of 1.2 for a specific MeSH term indicates that the MeSH term is assigned

to the researcher’s publications 1.2 standard deviations more than would be expected from the

global average (within the same time window). Hence, the z-score measures how focused the

researcher is on specific topics or concepts at various points in their career. For each window

of a researcher’s career we have a z-score for each MeSH term assigned to their publications in

that window. Treating these z-scores as a distribution over MeSH terms for a given individual

in a particular time window, our measure of specialization (speci,w) is the 90th percentile of

this distribution. The higher a researcher’s value of speci,w, the more intensely focused that

researcher is upon the topics they are working on the most, relative to other researchers. A lower

value indicates that the researcher is more diffused in the topics they are working on the most.

In short, the measure concerns only the topics the researcher is working on the most, relative to

the effort expended on these topics by other researchers. Researchers can obtain a high score

by publishing on several rare topics or a much smaller number of more mainstream topics —

specialization is effectively measured relative to the average expertise within the biomedical

field.

For example, a researcher whose publications are almost entirely at the intersection of

Alzheimer’s Disease, electrophysiology, and drug discovery would be considered very spe-

cialized (even though they produce highly interdisciplinary work), because the same few MeSH

terms appear in many of publications they produce, despite these fields being relatively large. In

contrast, a researcher working in the above fields in roughly equal proportions but without much

MeSH-term overlap on individual publications would be considered more generalized, even if

these publications were relatively monodisciplinary. In this way, a specialist can produce exclu-

sively interdisciplinary work, and a generalist can produce exclusively monodisciplinary work,
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which distinguishes our measure from those in the extant literature. In reality, while we con-

sider specialization and disciplinarity to be distinct concepts in this work, we expect that there

is a strong inverse relationship between the interdisciplinarity of particular publications and the

specialization of the authors.

With respect to dynamics, because we calculate specialization in three-year blocks, the mid-

to long-term evolution of the MeSH dictionary have minimal impact on our measure. Further,

any effects of short-term popularity dynamics of particular MeSH headings are mitigated by

considering the RCA rather than considering only the usage of terms by each individual. For

example, the measure can differentiate between a particular researcher starting to study a spe-

cific topic more frequently and an entire field doing the same.

Figure 3 illustrates the distribution of the specialization measure as a function of career age.

It shows a slight increase early in the career, followed by an extended period of minimal varia-

tion.

[FIGURE 3 ABOUT HERE]

Regression Model. Next, we estimate the extent to which specialization affects a researcher’s

scientific impact using an econometric regression model. As researchers are active over many

time windows in the dataset (up to ten time windows covering 30 years), we are able to use

variation in each researcher’s specialization across time windows as the source for econometric

identification. The specific model we estimate is:

Ii,w = β1speci,w + β2(speci,w × pi,w) + β3(speci,w × agei,w)

+ γxi,w + δw + ci + εi,w. (4)
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where Ii,w is the logarithm of the average number of citations accumulated by researcher i’s pa-

pers published in window w up to five years after publication.1 The variable speci,w is the main

variable of interest described above (standardized for the regression tables), career age (agei,w,

number of years since first publication), publishing rate (pi,w, number of papers published in

w), and cosine similarity cosinei,w are secondary variables of interest. The term xi,w contains

agei,w, pi,w, cosinei,w, and additional variables controlling for the number of unique co-authors

within a window and the number of unique MeSH terms extracted from the researcher’s papers

in each window. The variables δw and ci represent time and researcher fixed effects, while εi,w

is an error term.

The interpretation of the specialization parameter is as follows: a one-standard deviation

increase in the specialization measure of the researcher in a given time window is associated

with a β1 ∗ 100% increase in the number of citations that they received for the papers pub-

lished in the time window. This time-window-based approach also means that researchers who

transition between fields appear less specialized only briefly—such transitions do not lead to

persistently lower level of observed specialization. Further, because analyses are conducted

within-researcher, we do not apply any explicit subject-level citation normalizations.

Cosine similarity, cosinei,w, captures the degree to which a researcher’s topical output has

changed since the last window. This variable is calculated as

cosinei,w =

∑n
j=1Mi,w[j]Mi,w−1[j]√∑n

j=1 (Mi,w[j])2
√∑n

j=1 (Mi,w−1[j])2
, (5)

where Mi,w is a vector wherein the jth entry captures the number of articles that researcher i

publishes in window w that are tagged with the jth MeSH term (from the universe of n ordered

MeSH terms). This value is maximised (equal to unity) when the vectors Mi,w and Mi,w−1

are identical, and minimized (equal to zero) when the sets of MeSH represented by Mi,w and
1The citation count for each publication is calculated by summing over its first five years (and not the five years

from the center of the window).
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Mi,w−1 are disjoint. This variable is set to zero for the first window during which a researcher

is active.
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Tables & Figures

(1) (2) (3) (4)

Specialization 0.257∗∗∗ 0.361∗∗∗ 0.444∗∗∗ 0.732∗∗∗

(0.003) (0.004) (0.006) (0.010)

Specialization*Career Age −0.007∗∗∗ −0.022∗∗∗

(0.0002) (0.001)

Specialization*Papers −0.061∗∗∗−0.096∗∗∗

(0.002) (0.003)

Career Age*Papers 0.015∗∗∗

(0.0004)

Specialization*Career Age*Papers 0.003∗∗∗

(0.0002)

Cosine similarity -0.404∗∗∗ -0.409∗∗∗ -0.437∗∗∗ -0.416∗∗∗

(0.013) (0.012) (0.012) (0.012)

Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗∗∗p<0.0001

Table 1: Fixed effects panel regression results. Dependent variable is the log number of citations
per paper and the “Specialization” variable is standardized. Standard errors in parentheses.
All control variables described in the text are included. Based on 29,197 unique biomedical
researchers for a total of 213,019 researcher–time window observations.
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Figure 1: Increase in impact estimated for a one σ increase in specialization as a function
of career age, for two different publishing rates. Low publishing rate is estimated at 12.5th

percentile (middle of first quartile) of papers per year. High publishing rate is estimated at
87.5th percentile (middle of fourth quartile) of papers per year. The shaded envelope of each
line is the 99.9% confidence interval.
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Figure 2: Workflow for calculating the specialization measure. First a researcher’s career is
broken into three year windows. Publications are extracted for each window. From those pub-
lications, the Medical Subject Headings counts extracted, then the Revealed Comparative Ad-
vantage calculated for each. Finally each RCA is transformed into a z-score and the 90th of the
researcher’s z-score is that researcher’s extent of specialization in that window (speci,w).
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Figure 3: Specialization as a function of career age. Here the distribution of raw researcher-
window specialization values (speci,w) are plotted as a function of career age. There is a slight
increase early in the career, followed by an extended period of minimal variation in the heart of
the career. The slight drop after career age 30 may be attributable to the fact that not all careers
in our dataset extend beyond that age.
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Xiaojun Hu. Is low interdisciplinarity of references an unexpected characteristic of nobel

prize winning research? Scientometrics, 127(4):2105–2122, 2022.

[46] Jonathon N Cummings and Sara Kiesler. Who collaborates successfully? Prior experience

reduces collaboration barriers in distributed interdisciplinary research. In Proceedings

of the 2008 ACM conference on Computer supported cooperative work, pages 437–446,

2008.

[47] Miles MacLeod. What makes interdisciplinarity difficult? Some consequences of domain

specificity in interdisciplinary practice. Synthese, 195(2):697–720, 2018.

[48] Jacob Clark Blickenstaff. Women and science careers: Leaky pipeline or gender filter?

Gender and education, 17(4):369–386, 2005.

[49] Donna K Ginther, Walter T Schaffer, Joshua Schnell, Beth Masimore, Faye Liu, Laurel L

Haak, and Raynard Kington. Race, ethnicity, and NIH research awards. Science, 333

(6045):1015–1019, 2011.

[50] Junming Huang, Alexander J Gates, Roberta Sinatra, and Albert-László Barabási. Histor-
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Supplementary materials
Discipline Breakdown. To better understand the sample of researchers, and also facilitate the
discipline by discipline robustness checks, the discipline of each researcher is estimated using
the following process. First, the journals a researcher has published in are extracted from his
or her publications. In this stage, we also eliminate highly interdisciplinary journals (PNAS,
Science, Nature, Annals of the New York Academy of Science, and PLoS ONE). Second, these
journal titles are matched to the map equation journal classifications developed by Rosvall and
Bergstrom [61]. To assign disciplines, the following algorithm is then followed:

if (50% or more of a researcher’s publications are in a specific discipline):
Assign that discipline

elif (the percentage of a researcher’s papers in a specific discipline are
more than 15 times greater than the global (PubMed) percentage in that
discipline):
Assign that discipline

elif (at least one of the researcher’s most frequent disciplines represents
more than 20% of his or her papers):
Assign all disciplines with more than 20% to the researcher

else
Assign NULL

A breakdown of the disciplines assigned can be found in Figures S1 and S2.

Derivation of standard deviation of RCA. Starting with the equation for Revealed Compar-
ative Advantage:

RCAi,m,w =
ni,m,w

pi,t

/(
Nm,w

Pw

)
(S1)

we note it is an equation of four variables, namely ni,m,w, pi,w, Nm,w, and Pw. Drawing from
propagation of uncertainties, we understand that the covariance (C) of an arbitrary function f
can be expressed as:

Cf = JCxJ
> (S2)

where x in the right hand side covariance matrix (Cx) denotes it is over the independent vari-
ables of Equation S1 and J is the Jacobian matrix. Executing this for the RCAi,m,w and assum-
ing no correlation between the independent variables we get the following relationship:

σ2
RCA =

∣∣∣∣∂RCA∂n

∣∣∣∣2 σ2
n +

∣∣∣∣∂RCA∂p

∣∣∣∣2 σ2
p +

∣∣∣∣∂RCA∂N

∣∣∣∣2 σ2
N +

∣∣∣∣∂RCA∂P

∣∣∣∣2 σ2
P . (S3)

It is straightforward to show that this equation simplifies to:

σ2
RCA =

∣∣∣∣RCAn
∣∣∣∣2 σ2

n +

∣∣∣∣RCAp
∣∣∣∣2 σ2

p +

∣∣∣∣RCAN
∣∣∣∣2 σ2

N +

∣∣∣∣RCAP
∣∣∣∣2 σ2

P . (S4)
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Making the assumption that the probability that any given MeSH term appears on a paper arises
from a binomial distribution we can use the property σ2

x = x to further simplify:

σ2
RCA =

RCA2

n2
n+

RCA2

p2
p+

RCA2

N2
N +

RCA2

P 2
P. (S5)

Canceling common factors and factoring out RCA we arrive at:

σRCA = RCA

(
1

n
+

1

p
+

1

P
+

1

N

)1/2

(S6)

as used in the main manuscript.

Robustness Checks. To check the robustness of our results, we carry out a number of addi-
tional regressions. First, we perform the same analysis as found in the main manuscript, but
on a different, less published, sample of biomedical researchers. Second, we conduct a non-
parametric test to demonstrate the lack of a relationship between our specialization measure
and a more general measure of interdisciplinarity. Finally, we carry out the same analysis as in
the main manuscript, but on researchers of specified disciplines of the biomedical sciences.

Lower publishing sample. Here we carry out the same regression as found in the main
manuscript but on a sample of biomedical researchers publishing between 75 and 99 publi-
cations over the course of their careers. Results can be found in Table S1 and Figure S3 and are
consistent with the findings in the main body of the paper.

Specialization and Interdisciplinarity. Our measure of specialization captures the diversity
of topics on which a scientist is working. As such, if a scientist is working on a small set of
topics that are spread across traditionally-defined fields, this person would be considered to be
specialized and interdisciplinary. For this reason, in the main body of the paper, we claim that
the opposite of specialization is not interdisciplinarity but rather generalization.

Here we conduct simple statistical tests to demonstrate the lack of relationship between our
specialization measure and a measure of interdisciplinarity. For this purpose, we consider a
researcher to be interdisciplinary if they have been assigned multiple disciplines (as defined
above) where, importantly, these disciplines are defined independently from MeSH terms. This
definition is quite strict, which provides some assurance that these interdisciplinary researchers
have indeed published a significant number of papers in multiple disciplines throughout their
career. However, we also accept that this could occur when a researcher moves between dis-
ciplines rather than working across disciplines. Therefore, to give the best possible chance
for a significant difference in specialization to be found between interdisciplinary and non-
interdisciplinary researchers, we consider both the minimum and the average level of special-
ization for each researcher throughout their career. This precaution will pick up a transition
between disciplines as the least specialized period of the researcher’s career and, taken alone,
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this period would be challenging to distinguish from ‘true’ generalization (as opposed to a tran-
sient state).

If generalization and interdisciplinarity were significantly correlated, we would expect the
least specialized period in interdisciplinary researchers’ careers to be lower than that of non-
interdisciplinary researchers. We may also expect their average specialization to be lower.
Further, as average specialization levels do not appear to stabilize until about ten years into
a career, we may wish to consider this latter part of the career separately. As such, we test
all four of these scenarios for significant differences between interdisciplinary researchers and
non-interdisciplinary researchers: minimum specialization across the whole career, minimum
specialization for career age greater than ten years, average specialization across the whole ca-
reer, and average specialization for career age greater than ten years. We use two non-parametric
tests for this purpose: the Mann–Whitney U test and the two-sample Kolmogorov–Smirnov test.
The former calculates the probability that a randomly chosen interdisciplinary researcher is less
specialized than a randomly chosen non-interdisciplinary researcher, while the latter directly
compares the cumulative specialization distributions of each group and tests the significance of
any differences. We conduct these tests for all researchers in the primary cohort (greater than
100 publications) for whom we were able to obtain sufficient information about disciplines (not
assigned ”NULL”). In total, 29670 researchers are included in this analysis, of which 1709
(5.8%) are classified as interdisciplinary.

Table S2 displays the results of these tests. The p-values for all tests indicate that any dif-
ferences in specialization levels between interdisciplinary researchers and non-interdisciplinary
researchers are not significant. This result is consistent with our assertion that the special-
ization measure does not measure interdisciplinarity (or lack thereof), at least for biomedical
researchers with long careers. While not displayed here, the same (qualitative) results are found
when the threshold of the distribution over MeSH terms, used to obtain our specialization mea-
sure, is set to 80% or 95%.

Separate Disciplines. To again better understand the robustness of our findings we carry out
the same regression analysis as in the main manuscript for each of the eight most common
disciplines in our data set of researchers. Disciplines are assigned according to the procedure
outlined in Section 1 above. Note that these regressions include all researchers assigned to
each specific discipline, and hence a research assigned to multiple disciplines will appear in
more than one regression. For each discipline we further report results for both the standard
sample consisting of researcher publishing 100 or more papers in their career, as well as the
set of researchers publishing 75 to 99 papers. These results are presented in Tables S3-S18 and
Figures -.

Even though these disciplines span a wide range of subject matters, norms, sample sizes
and career/laboratory structures (e.g.,hospital based clinical research vs. university experi-
mental labs) the results across all are qualitatively consistent with those presented in the main
manuscript.
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Figure S1: Breakdown of researcher disciplines. 29208 Researchers in total.

39



Medicine + Molecular and Cell Biology 49.7%

Molecular and Cell Biology + Neuroscience

18.2%

More than two
10.7%

Neuroscience + Psychology

6.9%

Medicine + Neuroscience

5.9%

Medicine + Psychology

3.3%

Misc

5.3%

Figure S2: Breakdown of disciplines for researchers assigned to more than one discipline. 1716
researchers.
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(1) (2) (3) (4)

Specialization 0.265∗∗∗ 0.359∗∗∗ 0.410∗∗∗ 0.727∗∗∗

(0.004) (0.006) (0.008) (0.014)

Specialization*Career Age −0.007∗∗∗ −0.025∗∗∗

(0.0003) (0.001)

Specialization*Papers −0.055∗∗∗ −0.098∗∗∗

(0.002) (0.005)

Career Age*Papers 0.021∗∗∗

(0.001)

Specialization*Career Age*Papers 0.004∗∗∗

(0.0003)

Observations 145,143 145,143 145,143 145,143
R2 0.174 0.178 0.178 0.186
Adjusted R2 0.022 0.026 0.026 0.036
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S1: Fixed effects panel regression results. Dependent variable is the log number of cita-
tions per paper and the “Specialization” variable is standardized. Standard errors in parentheses.
All control variables described in the main manuscript are included. Based on 22,589 unique
biomedical researchers with between 75 and 99 career publications career publications.
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Figure S3: Marginal effects for biomedical researchers with 75 to 99 career publications. Low
publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers per year.
High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of papers per
year. The shaded envelope of each line is the 99.9% confidence interval.
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All years (p-values)

M-W test K-S test

Min. Specialization 0.97 0.78
Ave. Specialization 0.60 0.47

>10 years (p-values)

M-W test K-S test

Min. Specialization 0.24 0.50
Ave. Specialization 0.17 0.15

Table S2: P-values from two non-parametric tests of differences in specialization between inter-
disciplinary researchers and non-interdisciplinary researchers. M-W corresponds to the Mann-
Whitney U test, while K-S corresponds to the two-sample Kolmogorov–Smirnov test. No sig-
nificant differences are found between the two groups at any conventional p-value threshold.
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(1) (2) (3) (4)

Specialization 0.251∗∗∗ 0.323∗∗∗ 0.422∗∗∗ 0.708∗∗∗

(0.005) (0.007) (0.009) (0.015)

Specialization*Career Age −0.005∗∗∗ −0.022∗∗∗

(0.0003) (0.001)

Specialization*Papers −0.057∗∗∗ −0.105∗∗∗

(0.002) (0.004)

Career Age*Papers 0.015∗∗∗

(0.001)

Specialization*Career Age*Papers 0.004∗∗∗

(0.0003)

Observations 81,398 81,398 81,398 81,398
R2 0.163 0.166 0.169 0.177
Adjusted R2 0.033 0.037 0.040 0.049
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S3: Fixed effects panel regression results. Dependent variable is the log number of cita-
tions per paper and the “Specialization” variable is standardized. Standard errors in parentheses.
All control variables described in the main manuscript are included. Based on 10,889 unique
biomedical researchers assigned to the discipline Molecular and Cell Biology with at least 100
career publications.
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Figure S4: Marginal effects for researchers in Molecular and Cell Biology with more than
100 career publications. Low publishing rate is estimated at 12.5th percentile (middle of first
quartile) of papers per year. High publishing rate is estimated at 87.5th percentile (middle of
fourth quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence
interval.
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(1) (2) (3) (4)

Specialization 0.249∗∗∗ 0.342∗∗∗ 0.395∗∗∗ 0.696∗∗∗

(0.006) (0.009) (0.012) (0.021)

Specialization*Career Age −0.007∗∗∗ −0.025∗∗∗

(0.0004) (0.001)

Specialization*Papers −0.057∗∗∗ −0.100∗∗∗

(0.004) (0.007)

Career Age*Papers 0.020∗∗∗

(0.001)

Specialization*Career Age*Papers 0.004∗∗∗

(0.001)

Observations 53,890 53,890 53,890 53,890
R2 0.133 0.138 0.137 0.146
Adjusted R2 −0.022 −0.016 −0.017 −0.007
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S4: Fixed effects panel regression results. Dependent variable is the log number of cita-
tions per paper and the “Specialization” variable is standardized. Standard errors in parenthe-
ses. All control variables described in the main manuscript are included. Based on 8,135 unique
biomedical researchers assigned to the discipline Molecular and Cell Biology with between 75
and 99 career publications.
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Figure S5: Marginal effects for researchers in Molecular and Cell Biology with 75 to 99 career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.275∗∗∗ 0.365∗∗∗ 0.478∗∗∗ 0.636∗∗∗

(0.007) (0.010) (0.013) (0.024)

Specialization*Career Age −0.006∗∗∗ −0.012∗∗∗

(0.0005) (0.001)

Specialization*Papers −0.064∗∗∗ −0.068∗∗∗

(0.003) (0.007)

Career Age*Papers 0.011∗∗∗

(0.001)

Specialization*Career Age*Papers 0.001
(0.0004)

Observations 48,433 48,433 48,433 48,433
R2 0.261 0.264 0.267 0.270
Adjusted R2 0.141 0.144 0.148 0.151
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S5: Fixed effects panel regression results. Dependent variable is the log number of cita-
tions per paper and the “Specialization” variable is standardized. Standard errors in parenthe-
ses. All control variables described in the main manuscript are included. Based on 6,722 unique
biomedical researchers assigned to the discipline Medicine with at least 100 career publications.
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Figure S6: Marginal effects for researchers in Medicine with more than 100 career publications.
Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers per year.
High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of papers per
year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.292∗∗∗ 0.343∗∗∗ 0.411∗∗∗ 0.572∗∗∗

(0.010) (0.013) (0.018) (0.034)

Specialization*Career Age −0.004∗∗∗ −0.012∗∗∗

(0.001) (0.002)

Specialization*Papers −0.044∗∗∗ −0.065∗∗∗

(0.006) (0.011)

Career Age*Papers 0.010∗∗∗

(0.002)

Specialization*Career Age*Papers 0.002
(0.001)

Observations 30,440 30,440 30,440 30,440
R2 0.217 0.218 0.219 0.220
Adjusted R2 0.068 0.069 0.070 0.072
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S6: Fixed effects panel regression results. Dependent variable is the log number of ci-
tations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 4,825
unique biomedical researchers assigned to the discipline Medicine with between 75 and 99
career publications.
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Figure S7: Marginal effects for researchers in Medicine with 75 to 99 career publications. Low
publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers per year.
High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of papers per
year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.225∗∗∗ 0.365∗∗∗ 0.479∗∗∗ 0.749∗∗∗

(0.009) (0.013) (0.017) (0.029)

Specialization*Career Age −0.009∗∗∗ −0.022∗∗∗

(0.001) (0.002)

Specialization*Papers −0.082∗∗∗ −0.111∗∗∗

(0.005) (0.009)

Career Age*Papers 0.013∗∗∗

(0.001)

Specialization*Career Age*Papers 0.003∗∗∗

(0.001)

Observations 22,006 22,006 22,006 22,006
R2 0.219 0.229 0.231 0.240
Adjusted R2 0.094 0.106 0.108 0.119
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S7: Fixed effects panel regression results. Dependent variable is the log number of ci-
tations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 2,994
unique biomedical researchers assigned to the discipline Neuroscience with at least 100 career
publications.
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Figure S8: Marginal effects for researchers in Neuroscience with 100 or more career publica-
tions. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers
per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of
papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.245∗∗∗ 0.373∗∗∗ 0.415∗∗∗ 0.777∗∗∗

(0.012) (0.016) (0.022) (0.040)

Specialization*Career Age −0.009∗∗∗ −0.029∗∗∗

(0.001) (0.003)

Specialization*Papers −0.065∗∗∗ −0.116∗∗∗

(0.007) (0.014)

Career Age*Papers 0.022∗∗∗

(0.002)

Specialization*Career Age*Papers 0.005∗∗∗

(0.001)

Observations 15,992 15,992 15,992 15,992
R2 0.175 0.183 0.180 0.193
Adjusted R2 0.026 0.034 0.031 0.046
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S8: Fixed effects panel regression results. Dependent variable is the log number of cita-
tions per paper and the “Specialization” variable is standardized. Standard errors in parenthe-
ses. All control variables described in the main manuscript are included. Based on 2,423 unique
biomedical researchers assigned to the discipline Neuroscience with between 75 and 99 career
publications.
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Figure S9: Marginal effects for researchers in Neuroscience with between 75 and 99 career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.294∗∗∗ 0.396∗∗∗ 0.492∗∗∗ 0.647∗∗∗

(0.013) (0.018) (0.025) (0.045)

Specialization*Career Age −0.007∗∗∗ −0.013∗∗∗

(0.001) (0.003)

Specialization*Papers −0.065∗∗∗ −0.076∗∗∗

(0.007) (0.014)

Career Age*Papers 0.007∗∗∗

(0.002)

Specialization*Career Age*Papers 0.002
(0.001)

Observations 12,164 12,164 12,164 12,164
R2 0.294 0.298 0.300 0.303
Adjusted R2 0.176 0.181 0.183 0.186
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S9: Fixed effects panel regression results. Dependent variable is the log number of ci-
tations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 1,713
unique biomedical researchers assigned to the discipline Gastroenterology with at least 100
career publications.
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Figure S10: Marginal effects for researchers in Gastroenterology with 100 or more career publi-
cations. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers
per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of
papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.324∗∗∗ 0.380∗∗∗ 0.471∗∗∗ 0.612∗∗∗

(0.018) (0.026) (0.034) (0.065)

Specialization*Career Age −0.004∗ −0.011
(0.001) (0.004)

Specialization*Papers −0.056∗∗∗ −0.074∗∗

(0.011) (0.022)

Career Age*Papers 0.007
(0.003)

Specialization*Career Age*Papers 0.001
(0.001)

Observations 8,017 8,017 8,017 8,017
R2 0.260 0.261 0.263 0.264
Adjusted R2 0.112 0.113 0.116 0.117
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S10: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 1,304
unique biomedical researchers assigned to the discipline Gastroenterology with between 75 and
99 career publications.
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Figure S11: Marginal effects for researchers in Gastroenterology with between 75 and 99 career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.264∗∗∗ 0.395∗∗∗ 0.436∗∗∗ 0.763∗∗∗

(0.014) (0.020) (0.027) (0.047)

Specialization*Career Age −0.009∗∗∗ −0.027∗∗∗

(0.001) (0.003)

Specialization*Papers −0.057∗∗∗ −0.105∗∗∗

(0.007) (0.014)

Career Age*Papers 0.013∗∗∗

(0.002)

Specialization*Career Age*Papers 0.005∗∗∗

(0.001)

Observations 10,073 10,073 10,073 10,073
R2 0.262 0.269 0.267 0.276
Adjusted R2 0.140 0.149 0.146 0.156
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S11: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 1,396
unique biomedical researchers assigned to the discipline Infectious Diseases with at least 100
career publications.
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Figure S12: Marginal effects for researchers in Infectious Diseases with 100 or more career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.263∗∗∗ 0.326∗∗∗ 0.357∗∗∗ 0.461∗∗∗

(0.018) (0.026) (0.034) (0.063)

Specialization*Career Age −0.004∗∗ −0.008
(0.001) (0.004)

Specialization*Papers −0.036∗ −0.026
(0.011) (0.021)

Career Age*Papers 0.009∗

(0.003)

Specialization*Career Age*Papers −0.0004
(0.001)

Observations 7,460 7,460 7,460 7,460
R2 0.225 0.226 0.226 0.228
Adjusted R2 0.078 0.079 0.079 0.082
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S12: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 1,154
unique biomedical researchers assigned to the discipline Infectious Diseases with between 75
and 99 career publications.
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Figure S13: Marginal effects for researchers in Infectious Diseases with between 75 and 99
career publications. Low publishing rate is estimated at 12.5th percentile (middle of first quar-
tile) of papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth
quartile) of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.216∗∗∗ 0.311∗∗∗ 0.379∗∗∗ 0.382∗∗∗

(0.016) (0.023) (0.033) (0.061)

Specialization*Career Age −0.006∗∗∗ −0.002
(0.001) (0.004)

Specialization*Papers −0.053∗∗∗ −0.027
(0.009) (0.019)

Career Age*Papers −0.0004
(0.002)

Specialization*Career Age*Papers −0.001
(0.001)

Observations 7,757 7,757 7,757 7,757
R2 0.269 0.273 0.273 0.275
Adjusted R2 0.146 0.150 0.150 0.152
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S13: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 1,086
unique biomedical researchers assigned to the discipline Radiology with at least 100 career
publications.
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Figure S14: Marginal effects for researchers in Radiology with 100 or more career publications.
Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers per year.
High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of papers per
year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.223∗∗∗ 0.288∗∗∗ 0.344∗∗∗ 0.465∗∗∗

(0.021) (0.030) (0.042) (0.080)

Specialization*Career Age −0.005∗ −0.009
(0.002) (0.005)

Specialization*Papers −0.045∗∗ −0.044
(0.013) (0.027)

Career Age*Papers 0.007
(0.004)

Specialization*Career Age*Papers −0.0001
(0.002)

Observations 5,483 5,483 5,483 5,483
R2 0.212 0.214 0.214 0.217
Adjusted R2 0.050 0.052 0.052 0.055
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S14: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 902
unique biomedical researchers assigned to the discipline Radiology with between 75 and 99
career publications.
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Figure S15: Marginal effects for researchers in Radiology with between 75 and 99 career publi-
cations. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers
per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of
papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.236∗∗∗ 0.292∗∗∗ 0.378∗∗∗ 0.479∗∗∗

(0.018) (0.023) (0.034) (0.059)

Specialization*Career Age −0.004∗∗ −0.008
(0.001) (0.004)

Specialization*Papers −0.046∗∗∗ −0.047∗

(0.009) (0.017)

Career Age*Papers 0.007∗

(0.002)

Specialization*Career Age*Papers 0.0004
(0.001)

Observations 6,738 6,738 6,738 6,738
R2 0.266 0.268 0.270 0.271
Adjusted R2 0.142 0.144 0.146 0.147
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S15: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 944
unique biomedical researchers assigned to the discipline Nephrology with at least 100 career
publications.
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Figure S16: Marginal effects for researchers in Nephrology with 100 or more career publica-
tions. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers
per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of
papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.266∗∗∗ 0.329∗∗∗ 0.446∗∗∗ 0.600∗∗∗

(0.024) (0.035) (0.046) (0.087)

Specialization*Career Age −0.005 −0.012
(0.002) (0.006)

Specialization*Papers −0.068∗∗∗ −0.082∗

(0.015) (0.028)

Career Age*Papers 0.009
(0.004)

Specialization*Career Age*Papers 0.001
(0.002)

Observations 3,962 3,962 3,962 3,962
R2 0.246 0.248 0.251 0.253
Adjusted R2 0.093 0.095 0.099 0.101
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S16: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 638
unique biomedical researchers assigned to the discipline Nephrology with between 75 and 99
career publications.
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Figure S17: Marginal effects for researchers in Nephrology with between 75 and 99 career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.212∗∗∗ 0.328∗∗∗ 0.428∗∗∗ 0.722∗∗∗

(0.018) (0.024) (0.031) (0.058)

Specialization*Career Age −0.008∗∗∗ −0.025∗∗∗

(0.001) (0.004)

Specialization*Papers −0.068∗∗∗ −0.139∗∗∗

(0.008) (0.016)

Career Age*Papers 0.005
(0.002)

Specialization*Career Age*Papers 0.006∗∗∗

(0.001)

Observations 5,990 5,990 5,990 5,990
R2 0.338 0.344 0.347 0.354
Adjusted R2 0.227 0.234 0.237 0.245
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S17: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 828
unique biomedical researchers assigned to the discipline Psychology with at least 100 career
publications.
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Figure S18: Marginal effects for researchers in Psychology with 100 or more career publica-
tions. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of papers
per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile) of
papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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(1) (2) (3) (4)

Specialization 0.186∗∗∗ 0.233∗∗∗ 0.259∗∗∗ 0.303∗∗

(0.026) (0.036) (0.046) (0.085)

Specialization*Career Age −0.003 −0.004
(0.002) (0.006)

Specialization*Papers −0.026 −0.028
(0.014) (0.026)

Career Age*Papers 0.001
(0.004)

Specialization*Career Age*Papers 0.0005
(0.002)

Observations 3,882 3,882 3,882 3,882
R2 0.240 0.240 0.241 0.241
Adjusted R2 0.091 0.092 0.092 0.092
Control Variables Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Researcher Fixed Effects Yes Yes Yes Yes

∗p<0.01; ∗∗p<0.001; ∗∗∗p<0.0001

Table S18: Fixed effects panel regression results. Dependent variable is the log number of
citations per paper and the “Specialization” variable is standardized. Standard errors in paren-
theses. All control variables described in the main manuscript are included. Based on 603
unique biomedical researchers assigned to the discipline Psychology with between 75 and 99
career publications.
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Figure S19: Marginal effects for researchers in Psychology with between 75 and 99 career
publications. Low publishing rate is estimated at 12.5th percentile (middle of first quartile) of
papers per year. High publishing rate is estimated at 87.5th percentile (middle of fourth quartile)
of papers per year. The shaded envelope of each line is the 99.9% confidence interval.
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